MCS 452 REVIEW PROBLEMS

2) Choose ALWAYS or SOMETIMES or NEVER .

(a) An inner product space is a vector space.

(b) A normed space is an inner product space.

(c) vector space is an inner product space.

(d) An inner product space is a normed space.

(e) A normed space is a vector space.

(f) A vector space is a normed space.

Solutions.

a)ALWAYS b)SOMETIMES c) SOMETIMES d)ALWAYS e)ALWAYS f) SOME-TIMES

2) a) Give the statement and proof of the Cauchy- Schwarz Inequality in an Inner Product Space.

Solution.

Let X be an Inner Product Space with inner product <.;.> , for every $x,y\in X$ holds that

$$|\langle x, y \rangle| \le ||x||||y||$$

3) Prove that if X is an inner product space, then is the inner product $\langle .;. \rangle : X \times X \to \mathbb{K}$ continuous. This means that if $x_n \to x$ and $y_n \to y$ then $\langle x_n, y_n \rangle \to \langle x, y \rangle$ for $n \to \infty$ Solution.

With the triangle inequality and the inequality of Cauchy-Schwarz

$$\begin{split} | < x_n, y_n > - < x, y > | = | < x_n, y_n > - < x_n, y > + < x_n, y > - < x, y > | \\ | < x_n, y_n - y > - < x_n - x, y > | \le | < x_n, y_n - y > + < x_n - x, y > - < x, y > | \\ |||x_n||||y_n - y|| + ||x_n - x||||y|| \to 0 \\ \text{since } ||x_n - x|| \to 0 \text{ and } ||y_n - y|| \to 0 \text{ as } n \to \infty \end{split}$$

4) Prove that a) if X is an inner product space and A is a non-empty subset of X, then A^{\perp} is a closed subspace of X. b) If $A \subseteq B$ then $B^{\perp} \subseteq A^{\perp}$ Solution. Let $x, y \in A^{\perp}$ and $\alpha \in \mathbb{K}$, then for every $z \in A$,

$$| < x + \alpha y, z \rangle = < x, z \rangle + \alpha < y, z \rangle = 0$$

Thus A^{\perp} is a vector subspace of X. Remains to prove $A^{\perp} = \overline{A^{\perp}}$. We already know that $A^{\perp} \subseteq \overline{A^{\perp}}$. For the converse, let $x \in \overline{A^{\perp}}$ then there exist a sequence $\{x_n\}$ in A^{\perp} such that $x_n \to x$. Hence

$$\langle x, z \rangle = \lim_{n \to \infty} \langle x_n, z \rangle = 0$$

for every $z \in A$. (Inner product is continuous). So $x \in A^{\perp}$ and $A^{\perp} = \overline{A^{\perp}}$. b) If $x \in B^{\perp}$ then $\langle x, y \rangle = 0$ for each $y \in B$ and in particular for every $x \in A \subseteq B$. So $x \in A^{\perp}$ and this gives $B^{\perp} \subseteq A^{\perp}$.

5) Prove that, if X is an inner product space and $S = \{x_1, x_2, \ldots, x_n\}$ is an orthogonal system then S is orthogonal.

Proof. It is already done in class.

6) Let $S = \{x_1, x_2, \dots, x_n\}$ be an orthonormal set in X and $0 \notin S$ then

$$||x - y|| = \sqrt{2}$$

for every $x \neq y$ in S.

Solution. since S is orthonormal, then for $x \neq y$

$$||x - y||^2 = \langle x - y, x - y \rangle = \langle x, x \rangle + \langle y, y \rangle = 2$$

where $x \neq 0$ and $y \neq 0$ because $0 \notin S$.

7) a) Give the definition of the sesquilinear form.

b) Give the statement of the Riesz Representation Theorem.

c) What means "Hilbert space"? Give an example. (Hint: Look at to the lecture notes.)

8) Consider the Hilbert space $L^2[0;\infty)$ of square integrable real-valued functions, with the standard inner product

$$\langle f,g \rangle = \int_0^\infty f(x)g(x)dx = \lim_{R \to \infty} \int_0^R f(x)g(x)dx$$

Define the linear operator $T: L^2[0; \infty) \to L^2[0; \infty)$ by $(Tf)(x) = f(\frac{x}{5})$ where $f \in L^2[0; \infty)$ and $x \in [0, \infty)$. a) Calculate the Hilbert-adjoint operator T^* (Note that $\langle Tf, g \rangle = \langle f, T^*(g) \rangle$) b)Calculate the norm of $||T^*(g)||$ for all $g \in L^2[0; \infty)$ with ||g|| = 1. c) Calculate ||T||. Solutions. a) $\langle Tf, g \rangle = \lim_{R \to \infty} \int_0^R f(\frac{x}{5})g(x)dx = \lim_{R \to \infty} \int_0^{R/5} f(y)g(5y)5dy = \langle f, T^* \rangle$, so $T^*g(x) = 5g(5x)$. b) $||T^*(g)||^2 = \lim_{R \to \infty} \int_0^R |5g(5x)|^2 dx$ so $||T^*(g)||^2 = 25 \lim_{R \to \infty} \int_0^{5R} |\frac{1}{5}|g(y)|^2 dy = 5||g||^2$ and this gives that $||T^*|| = \sqrt{5}$ c) $||T|| = ||T^*||$. 9) Let $A: [a,b] \to \mathbb{R}$ be a continuous function on [a,b]. Define the operator $T: L^2[0; \infty) \to L^2[0; \infty)$ by

$$(Tf)(t) = A(t)f(t)$$

a)Prove that T is a linear operator on $L^2[a; b]$.

b) Prove that T is a bounded linear operator $onL^2[a; b]$. Solutions.

a) Let $f, g \in L^2[a; b]$ and $\alpha \in \mathbb{R}$ then

$$T(f+g)(t) = A(t)(f+g)(t) = A(t)f(t) + A(t)g(t) = T(f)(t) + T(g)(t)$$

and

$$T(\alpha f)(t) = A(t)(\alpha f)(t) = \alpha A(t)(f)(t) = \alpha T(f)(t)$$

b) $||(Tf)|| \le ||A||_{\infty} ||f||$ with $||.||_{\infty}$ the sup-norm.

A is continuous and because [a, b] is bounded and closed, then $A||_{\infty} = \max_{t \in [a,b]} |A(t)|$. 10) Consider the space C[0, 1] with an inner product $\langle f, g \rangle = \int_0^1 f(t)g(t)dt$. Let $f_1(t) = t^2 + 1$ and $f_2(t) = 1 + t$. Use Gram-Schmidt process to find an orthogonal basis for $Span\{f_1, f_2\}$.

Solution. Begin by letting $g_1 = f_1$ and then define

$$g_2 = f_2 - \frac{\langle f_2, g_1 \rangle}{\langle g_1, g_1 \rangle} g_1$$

and evaluate the inner products.

11) In \mathbb{R}^3 , let u = (0, 1, 0) and v = (1, -1, 2). Define the inner product by

$$\langle u, v \rangle = Au.Av = u^T.A^T.A.v$$

where A is the 3×3 matrix with rows [1, 0, 2], [0, 3, -1], [1, 0, 1],

a) Compute $\langle u, v \rangle$

b) Compute the norms ||u||, ||v||

c) Find all vectors w perpendicular to u

(Hint. a similar question is solved in the lecture)