
MCS 452 REVIEW PROBLEMS

2) Choose ALWAYS or SOMETIMES or NEVER .
(a) An inner product space is a vector space.
(b) A normed space is an inner product space.
(c) vector space is an inner product space.
(d) An inner product space is a normed space.
(e) A normed space is a vector space.
(f) A vector space is a normed space.
Solutions.
a)ALWAYS b)SOMETIMES c) SOMETIMES d)ALWAYS e)ALWAYS f) SOME-
TIMES
2) a) Give the statement and proof of the Cauchy- Schwarz Inequality in an
Inner Product Space.
Solution.
Let X be an Inner Product Space with inner product < .; . > , for every
x, y ∈ X holds that

| < x, y > | ≤ ||x||||y||

3) Prove that if X is an inner product space, then is the inner product
< .; . >: X ×X → K continuous. This means that if
xn → x and yn → y then < xn, yn >→< x, y > for n→∞
Solution.
With the triangle inequality and the inequality of Cauchy-Schwarz

| < xn, yn > − < x, y > | = | < xn, yn > − < xn, y > + < xn, y > − < x, y > |
| < xn, yn−y > − < xn−x, y > | ≤ | < xn, yn−y > + < xn−x, y > − < x, y > |

|||xn||||yn − y||+ ||xn − x||||y|| → 0

since ||xn − x|| → 0 and ||yn − y|| → 0 as n→∞

4) Prove that
a) if X is an inner product space and A is a non-empty subset of X, then A⊥

is a closed subspace of X.
b) If A ⊆ B then B⊥ ⊆ A⊥

Solution.
Let x, y ∈ A⊥ and α ∈ K , then for every z ∈ A ,

| < x+ αy, z >=< x, z > +α < y, z >= 0

Thus A⊥ is a vector subspace of X.
Remains to prove A⊥ = A⊥.
We already know that A⊥ ⊆ A⊥.
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For the converse, let x ∈ A⊥ then there exist a sequence {xn} in A⊥ such that
xn → x. Hence

< x, z >= lim
n→∞

< xn, z >= 0

for every z ∈ A. (Inner product is continuous). So x ∈ A⊥ and A⊥ = A⊥.
b) If x ∈ B⊥ then < x, y >= 0 for each y ∈ B and in particular for every
x ∈ A ⊆ B. So x ∈ A⊥ and this gives B⊥ ⊆ A⊥.
5) Prove that, if X is an inner product space and S = {x1, x2, . . . , xn} is an
orthogonal system then S is orthogonal.
Proof. It is already done in class.
6) Let S = {x1, x2, . . . , xn} be an orthonormal set in X and 0 /∈ S then

||x− y|| =
√

2

for every x 6= y in S.
Solution. since S is orthonormal, then for x 6= y

||x− y||2 =< x− y, x− y >=< x, x > + < y, y >= 2

where x 6= 0 and y 6= 0 because 0 /∈ S.

7) a) Give the definition of the sesquilinear form.
b) Give the statement of the Riesz Representation Theorem.
c) What means ”Hilbert space”? Give an example. (Hint: Look at to the lec-
ture notes. )
8) Consider the Hilbert space L2[0;∞) of square integrable real-valued func-
tions, with the standard inner product

< f, g >=
∫ ∞
0

f(x)g(x)dx = lim
R→∞

∫ R

0
f(x)g(x)dx

Define the linear operator T : L2[0;∞)→ L2[0;∞) by (Tf)(x) = f(x
5
) where

f ∈ L2[0;∞) and x ∈ [0,∞).
a) Calculate the Hilbert-adjoint operator T ∗

(Note that < Tf, g >=< f, T ∗(g) > )
b)Calculate the norm of ||T ∗(g)|| for all g ∈ L2[0;∞) with ||g|| = 1.
c) Calculate ||T ||.
Solutions. a)< Tf, g >= limR→∞

∫ R
0 f(x

5
)g(x)dx = limR→∞

∫ R/5
0 f(y)g(5y)5dy =<

f, T ∗ >, so T ∗g(x) = 5g(5x).
b) ||T∗(g)||2 = limR→∞

∫ R
0 |5g(5x)|2dx so ||T∗(g)||2 = 25 limR→∞

∫ 5R
0 |15 |g(y)|2dy =

5||g||2 and this gives that ||T ∗|| =
√

5
c) ||T || = ||T ∗||.
9) Let A : [a, b] → R be a continuous function on [a, b]. Define the operator
T : L2[0;∞)→ L2[0;∞) by

(Tf)(t) = A(t)f(t)
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a)Prove that T is a linear operator on L2[a; b].
b) Prove that T is a bounded linear operator onL2[a; b].
Solutions.
a) Let f, g ∈ L2[a; b] and α ∈ R then

T (f + g)(t) = A(t)(f + g)(t) = A(t)f(t) + A(t)g(t) = T (f)(t) + T (g)(t)

and
T (αf)(t) = A(t)(αf)(t) = αA(t)(f)(t) = αT (f)(t)

b) ||(Tf)|| ≤ ||A||∞||f || with ||.||∞ the sup-norm.
A is continuous and because [a, b] is bounded and closed, thenA||∞ = maxt∈[a,b] |A(t)|.
10) Consider the space C[0, 1] with an inner product < f, g >=

∫ 1
0 f(t)g(t)dt.

Let f1(t) = t2 + 1 and f2(t) = 1 + t. Use Gram-Schmidt process to find an
orthogonal basis for Span{f1, f2}.
Solution. Begin by letting g1 = f1 and then define

g2 = f2 −
< f2, g1 >

< g1, g1 >
g1

and evaluate the inner products.
11) In R3, let u = (0, 1, 0) and v = (1,−1, 2). Define the inner product by

< u, v >= Au.Av = uT .AT .A.v

where A is the 3× 3 matrix with rows [1, 0, 2], [0, 3,−1], [1, 0, 1],
a) Compute < u, v >
b) Compute the norms ||u||, ||v||
c) Find all vectors w perpendicular to u
(Hint. a similar question is solved in the lecture)
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