MCS 452 REVIEW PROBLEMS

2) Choose ALWAYS or SOMETIMES or NEVER .
(a) An inner product space is a vector space.
(b) A normed space is an inner product space.
(c) vector space is an inner product space.
(d) An inner product space is a normed space.
(e) A normed space is a vector space.
(f) A vector space is a normed space.

Solutions.
a)ALWAYS b)SOMETIMES c) SOMETIMES d)ALWAYS e)ALWAYS f) SOMETIMES
2) a) Give the statement and proof of the Cauchy- Schwarz Inequality in an Inner Product Space.
Solution.
Let X be an Inner Product Space with inner product $<. ;$. $>$, for every $x, y \in X$ holds that

$$
|<x, y>| \leq\|x\|\| \| y \|
$$

3) Prove that if X is an inner product space, then is the inner product $<. ;>: X \times X \rightarrow \mathbb{K}$ continuous. This means that if
$x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ then $<x_{n}, y_{n}>\rightarrow<x, y>$ for $n \rightarrow \infty$
Solution.
With the triangle inequality and the inequality of Cauchy-Schwarz

$$
\begin{gathered}
\left|<x_{n}, y_{n}>-<x, y>\left|=\left|<x_{n}, y_{n}>-<x_{n}, y>+<x_{n}, y>-<x, y>\right|\right.\right. \\
\left|<x_{n}, y_{n}-y>-<x_{n}-x, y>\left|\leq\left|<x_{n}, y_{n}-y>+<x_{n}-x, y>-<x, y>\right|\right.\right. \\
\left|\left|| x _ { n } | \left\|| y _ { n } - y | \left|+\left|\left|x_{n}-x\right| \|||| |>0\right.\right.\right.\right.\right.
\end{gathered}
$$

since $\left\|x_{n}-x\right\| \rightarrow 0$ and $\left\|y_{n}-y\right\| \rightarrow 0$ as $n \rightarrow \infty$
4) Prove that
a) if X is an inner product space and A is a non-empty subset of X, then A^{\perp} is a closed subspace of X.
b) If $A \subseteq B$ then $B^{\perp} \subseteq A^{\perp}$

Solution.

Let $x, y \in A^{\perp}$ and $\alpha \in \mathbb{K}$, then for every $z \in A$,

$$
\mid<x+\alpha y, z>=<x, z>+\alpha<y, z>=0
$$

Thus A^{\perp} is a vector subspace of X.
Remains to prove $A^{\perp}=\overline{A^{\perp}}$.
We already know that $A^{\perp} \subseteq \overline{A^{\perp}}$.

For the converse, let $x \in \overline{A^{\perp}}$ then there exist a sequence $\left\{x_{n}\right\}$ in A^{\perp} such that $x_{n} \rightarrow x$. Hence

$$
<x, z>=\lim _{n \rightarrow \infty}<x_{n}, z>=0
$$

for every $z \in A$. (Inner product is continuous). So $x \in A^{\perp}$ and $A^{\perp}=\overline{A^{\perp}}$.
b) If $x \in B^{\perp}$ then $<x, y>=0$ for each $y \in B$ and in particular for every $x \in A \subseteq B$. So $x \in A^{\perp}$ and this gives $B^{\perp} \subseteq A^{\perp}$.
5) Prove that, if X is an inner product space and $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is an orthogonal system then S is orthogonal.
Proof. It is already done in class.
6) Let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ be an orthonormal set in X and $0 \notin S$ then

$$
\|x-y\|=\sqrt{2}
$$

for every $x \neq y$ in S.
Solution. since S is orthonormal, then for $x \neq y$

$$
\|x-y\|^{2}=<x-y, x-y>=<x, x>+<y, y>=2
$$

where $x \neq 0$ and $y \neq 0$ because $0 \notin S$.
7) a) Give the definition of the sesquilinear form.
b) Give the statement of the Riesz Representation Theorem.
c) What means "Hilbert space"? Give an example. (Hint: Look at to the lecture notes.)
8) Consider the Hilbert space $L^{2}[0 ; \infty)$ of square integrable real-valued functions, with the standard inner product

$$
<f, g>=\int_{0}^{\infty} f(x) g(x) d x=\lim _{R \rightarrow \infty} \int_{0}^{R} f(x) g(x) d x
$$

Define the linear operator $T: L^{2}[0 ; \infty) \rightarrow L^{2}[0 ; \infty)$ by $(T f)(x)=f\left(\frac{x}{5}\right)$ where $f \in L^{2}[0 ; \infty)$ and $x \in[0, \infty)$.
a) Calculate the Hilbert-adjoint operator T^{*}
(Note that $<T f, g>=<f, T^{*}(g)>$)
b) Calculate the norm of $\left\|T^{*}(g)\right\|$ for all $g \in L^{2}[0 ; \infty)$ with $\|g\|=1$.
c) Calculate $\|T\|$.

Solutions. a) $<T f, g>=\lim _{R \rightarrow \infty} \int_{0}^{R} f\left(\frac{x}{5}\right) g(x) d x=\lim _{R \rightarrow \infty} \int_{0}^{R / 5} f(y) g(5 y) 5 d y=<$ $f, T^{*}>$, so $T^{*} g(x)=5 g(5 x)$.
b) $\|T *(g)\|^{2}=\lim _{R \rightarrow \infty} \int_{0}^{R}|5 g(5 x)|^{2} d x$ so $\|T *(g)\|^{2}=\left.25 \lim _{R \rightarrow \infty} \int_{0}^{5 R}\left|\frac{1}{5}\right| g(y)\right|^{2} d y=$ $5\|g\|^{2}$ and this gives that $\left\|T^{*}\right\|=\sqrt{5}$
c) $\|T\|=\left\|T^{*}\right\|$.
9) Let $A:[a, b] \rightarrow \mathbb{R}$ be a continuous function on $[a, b]$. Define the operator $T: L^{2}[0 ; \infty) \rightarrow L^{2}[0 ; \infty)$ by

$$
(T f)(t)=A(t) f(t)
$$

a)Prove that T is a linear operator on $L^{2}[a ; b]$.
b) Prove that T is a bounded linear operator on $L^{2}[a ; b]$.

Solutions.
a) Let $f, g \in L^{2}[a ; b]$ and $\alpha \in \mathbb{R}$ then

$$
T(f+g)(t)=A(t)(f+g)(t)=A(t) f(t)+A(t) g(t)=T(f)(t)+T(g)(t)
$$

and

$$
T(\alpha f)(t)=A(t)(\alpha f)(t)=\alpha A(t)(f)(t)=\alpha T(f)(t)
$$

b) $\|(T f)\| \leq\|A\|_{\infty}\|f\|$ with $\|\cdot\|_{\infty}$ the sup-norm.
A is continuous and because $[a, b]$ is bounded and closed, then $A \|_{\infty}=\max _{t \in[a, b]}|A(t)|$.
10) Consider the space $C[0,1]$ with an inner product $\langle f, g\rangle=\int_{0}^{1} f(t) g(t) d t$.

Let $f_{1}(t)=t^{2}+1$ and $f_{2}(t)=1+t$. Use Gram-Schmidt process to find an orthogonal basis for $\operatorname{Span}\left\{f_{1}, f_{2}\right\}$.
Solution. Begin by letting $g_{1}=f_{1}$ and then define

$$
g_{2}=f_{2}-\frac{<f_{2}, g_{1}>}{<g_{1}, g_{1}>} g_{1}
$$

and evaluate the inner products.
11) In \mathbb{R}^{3}, let $u=(0,1,0)$ and $v=(1,-1,2)$. Define the inner product by

$$
<u, v>=A u \cdot A v=u^{T} \cdot A^{T} \cdot A \cdot v
$$

where A is the 3×3 matrix with rows $[1,0,2],[0,3,-1],[1,0,1]$,
a) Compute $\langle u, v\rangle$
b) Compute the norms $\|u\|,\|v\|$
c) Find all vectors w perpendicular to u
(Hint. a similar question is solved in the lecture)

